(x^2+2y^2)dx+(3x^2-4y^2)dy=0

Simple and best practice solution for (x^2+2y^2)dx+(3x^2-4y^2)dy=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x^2+2y^2)dx+(3x^2-4y^2)dy=0 equation:


Simplifying
(x2 + 2y2) * dx + (3x2 + -4y2) * dy = 0

Reorder the terms for easier multiplication:
dx(x2 + 2y2) + (3x2 + -4y2) * dy = 0
(x2 * dx + 2y2 * dx) + (3x2 + -4y2) * dy = 0

Reorder the terms:
(2dxy2 + dx3) + (3x2 + -4y2) * dy = 0
(2dxy2 + dx3) + (3x2 + -4y2) * dy = 0

Reorder the terms for easier multiplication:
2dxy2 + dx3 + dy(3x2 + -4y2) = 0
2dxy2 + dx3 + (3x2 * dy + -4y2 * dy) = 0
2dxy2 + dx3 + (3dx2y + -4dy3) = 0

Reorder the terms:
2dxy2 + 3dx2y + dx3 + -4dy3 = 0

Solving
2dxy2 + 3dx2y + dx3 + -4dy3 = 0

Solving for variable 'd'.

Move all terms containing d to the left, all other terms to the right.

Factor out the Greatest Common Factor (GCF), 'd'.
d(2xy2 + 3x2y + x3 + -4y3) = 0

Subproblem 1

Set the factor 'd' equal to zero and attempt to solve: Simplifying d = 0 Solving d = 0 Move all terms containing d to the left, all other terms to the right. Simplifying d = 0

Subproblem 2

Set the factor '(2xy2 + 3x2y + x3 + -4y3)' equal to zero and attempt to solve: Simplifying 2xy2 + 3x2y + x3 + -4y3 = 0 Solving 2xy2 + 3x2y + x3 + -4y3 = 0 Move all terms containing d to the left, all other terms to the right. Add '-2xy2' to each side of the equation. 2xy2 + 3x2y + x3 + -2xy2 + -4y3 = 0 + -2xy2 Reorder the terms: 2xy2 + -2xy2 + 3x2y + x3 + -4y3 = 0 + -2xy2 Combine like terms: 2xy2 + -2xy2 = 0 0 + 3x2y + x3 + -4y3 = 0 + -2xy2 3x2y + x3 + -4y3 = 0 + -2xy2 Remove the zero: 3x2y + x3 + -4y3 = -2xy2 Add '-3x2y' to each side of the equation. 3x2y + x3 + -3x2y + -4y3 = -2xy2 + -3x2y Reorder the terms: 3x2y + -3x2y + x3 + -4y3 = -2xy2 + -3x2y Combine like terms: 3x2y + -3x2y = 0 0 + x3 + -4y3 = -2xy2 + -3x2y x3 + -4y3 = -2xy2 + -3x2y Add '-1x3' to each side of the equation. x3 + -1x3 + -4y3 = -2xy2 + -3x2y + -1x3 Combine like terms: x3 + -1x3 = 0 0 + -4y3 = -2xy2 + -3x2y + -1x3 -4y3 = -2xy2 + -3x2y + -1x3 Add '4y3' to each side of the equation. -4y3 + 4y3 = -2xy2 + -3x2y + -1x3 + 4y3 Combine like terms: -4y3 + 4y3 = 0 0 = -2xy2 + -3x2y + -1x3 + 4y3 Simplifying 0 = -2xy2 + -3x2y + -1x3 + 4y3 The solution to this equation could not be determined. This subproblem is being ignored because a solution could not be determined.

Solution

d = {0}

See similar equations:

| u^3-8u^2+11u+20=0 | | 2(x+4-2)=-4(x+2)+3 | | 7(-16)-8y=32 | | -3(3p+5)-2(6-8p)-3(7+2p)=0 | | -3x-5=3(-x+7) | | 3c-4c+1=5c+42+3 | | 5w^2-3w-50=0 | | -9(3x+2)+(28x-6)=0 | | -4y-8y=36 | | -115=5+6m | | .4(x-2)=4x | | 7(24)-8y=32 | | 2(x+2)-(9+x)=-2 | | 2(x+2)-(9+b)=2 | | -3n-5=6n-5 | | 5-4y+2x-6+y= | | 10y-1(4y+8)=20 | | (7y+6)-(2+6y)=10 | | -10x+11=-19 | | t=(8*2103) | | 9x=5x-2(2+3x) | | 3x-5x=-2 | | 5(t+3)+9=3(t-2)+5 | | T=(5*2516) | | 0.4x+6.1x=-5 | | 600=150+7.50h | | -4x+7x=-1 | | 3.7x-1.6-5.4x=-0.7x-1.6 | | 4(3)-3y=-18 | | 4.9t^2-25t-15=0 | | t=(2*1300) | | 464x-7=4x+3-x |

Equations solver categories